

Contribution ID: 111

Type: **poster**

High Repetition-rate, Two-cycle Driver for High-flux HHG

Monday 1 July 2019 18:15 (2 hours)

We demonstrate a hybrid dual-stage nonlinear compression scheme allowing to compress 330 fs-pulses generated from a high-energy ytterbium-doped fiber amplifier down to 6.8 fs pulse duration, with an overall transmission of 61%. This high transmission is obtained by using a first compression stage based on a gas-filled multipass cell, and a second stage based on a large-core gas-filled capillary. The source output is fully characterized in terms of spectral, temporal, spatial, and short- and long-term stability properties. The system's compactness, stability, and high average power makes it ideally suited to drive high photon flux XUV sources through high harmonic generation.

Authors: LAVENU, Loic (Amplitude Laser, Business Unit Science); NATILE, Michele (Amplitude Laser, Business Unit Science); GUICHARD, Florent (Amplitude Laser, Business Unit Science); Dr DÉLEN, Xavier (Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay); ZAOUTER, Yoann (Amplitude Laser, Business Unit Science); HANNA, Marc (Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay); GEORGES, Patrick (Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay)

Presenters: NATILE, Michele (Amplitude Laser, Business Unit Science); GUICHARD, Florent (Amplitude Laser, Business Unit Science); ZAOUTER, Yoann (Amplitude Laser, Business Unit Science); HANNA, Marc (Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay)

Session Classification: Poster session 1